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Dielectric and elastic properties of liquid crystals
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The structural properties, the static and relaxation dielectric coefficlentand €j(w) (j=|,L1)], the
rotational diffusion constant®, andD, the orientational correlation timeé0 (i=0,1), and the bulk elastic
constantK; (i=1,2,3) are investigated for polar liquid crystals, such asgentyl-4 -cyanobipheny(5CB).
¢j are calculated by a combination of the existing molecular theory and statistical-mechanical ajpBMagh
that takes into account translational and orientational correlations as well as their coupling, vehgogase
calculated by combining SMA and nuclear magnetic resonance relaxation theory, both based on a rotational
diffusion model in which the reorientation of an individual molecule is assumed as stochastic Brownian motion
in a potential of mean torque. Reasonable agreement between the calculated and experimental &zdunels of
€j(w) for 5CB is obtained. The bulk Frank elastic constatigi =1,2,3), for splay, twist, and bend distortion
modes, as well as their ratids; /K, andK, /K, are also obtained.
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[. INTRODUCTION atom-atom interaction potentialé6—18. In order to eluci-
date the role of intermolecular dipole-dipole correlations in
The problem of predicting physical properties of liquid the calculations of the static dielectric permittivity in the
crystalline compounds based upon information on moleculanematic phase of 5CB, we use the molecular model in which
shape and intermolecular interactions remains one of ththese correlations are treated explicitly. The statistical-
most fundamental problems in liquid crystélsCs) physics. mechanical theory based upon the method of conditional dis-
In recent years, the Gay-Beri&B) model [1] has been tribution functions[5,6,19 has been applied to calculations
frequently used for describing interactions between anisoef the nearest-neighbdNN) and the next NN correlators as
tropic molecules. Since the molecules that form the LC syswell as order parameters. The method takes into account
tem often possess strong polar groups, the dipolar GB potenranslational and orientational correlations as well as their
tial [2—6] with an axial dipole at the center or near the end ofcoupling. Using a dipolar GB potential, calculations have
the molecule is more appropriate for the description of suclbeen carried out in the framework of the molecular model
systems. In the case of polar LCs, suchnayanobiphenyls, that provides relationship between the static dielectric coef-
the angle between the para axis and the long molecular axfients and the pair orientational correlators for the neigh-
is small, and this leads to a large axial value of dipole MO+hors[20].
ment, for example~5D for 4-n-pentyl-4'- cyanobiphenyl Dielectric relaxation in the nematic LCs is usually inter-
(5CB). Among the most important properties of such com-yeted in the context of the rotational diffusion mog2d],
pounds, the dielectric coefficients and Frank elastic constan %., a stochastic Brownian process for molecular reorienta-
play a crucial role in several applications such as twistedg, g js ysed in which each molecule moves in time as a
nematic display$7]. The reason why many reports are stil sequence of small angular steps caused by collisions with its

concerned W'Fh th? dlelectru_: and elast_lc coefficients of We"surrounding molecules and under the influence of a potential
known materials like 5CB is that their measurements are

nontrivial [8—13]. Other reasons for choosing 5CB among of mean t_orque set up '.Jy thes_e m_olecules. Each mol_ecu_le s
the other cyanobiphenyls are its convenient temperaturgharactenzed by a rotational diffusion tensor whpse prmmpal
range for the nematic liquid crystalline phase, namely, fron/€Ments P=Dy, =D, ,D,,=D)) are determined in a
295.6 to 305.2 K, and its nearly uniaxial molecular symme-ff@me fixed on the molecule. NMR measurements of quadru-
try [10]. In particular, several nuclear magnetic resonancé®lar splittings, and deuteron Zeemah £) and quadrupolar
(NMR) investigations of the orientational order, molecular (T1q) Spin-lattice relaxation times in LCs allow the determi-
structure, and dynamica] processes have been reporté@tion of these principal elements and order parameters as a
[14,15, and therefore a large data set is available for comfunction of temperatur¢22]. Using these results together
parison with results from the theoretical routes. In additionWith data for static dielectric permittivity, the complex di-
the explosive development of computer power has made glectric permittivity of realistic mesogenic molecules, such
possible to investigate the 5CB molecule using detailecd®s 5CB, can be studied in the nematic phase.
In addition, we have investigated the Frank elastic con-
stants(EC9 of 5CB. Clearly, the ECs being material proper-
*Corresponding author. Permanent address: St. Petersburg Insties, reflect the underlying microscopic interactions and cor-
tute for Machine Sciences, the Russian Academy of Sciences, Stelations. Therefore, these studies should lead to a greater
Petersburg 199178, Russia. Electronic address: avz@brandonu.cinsight about parameters that influence the structure of nem-
Electronic address: dong@brandonu.ca atic phases. There are several microscopic theories for bulk
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ECsK; (i=1,2,3)[5,23-29 in which these coefficients are Here

related to structural quantities such as the single-particle ori-

entational distribution function, and the direct correlation iy T o _
function (DCF) of a nematic system. The central difficulty of i) .l;lj i), fjd(J) fwdq,de
these theories is the calculation of the DCF in the nematic

phase. Recently, calculations of the rake/K [K=3(K; W=vQ®«,

+K,+Kjz)] in the framework of the statistical mechanical

approacH5] have been reported. Here we extend our inves@h

tigations and perform calculations of the absolute values the

bulk Frank elastic constants for a dipolar GB fluid. V(ij)= exr{ _
It should be pointed out that in practice it is difficult to

measure the absolute values of these elastic congthhts . . . .

13]. Thus, we hope that our theoretical route will be usefulwhereoz denotes the volume associated with orientations. In

for the estimation of the absolute values of the Frank elastigqé"(l? an%(zf), Hi?i runs over all neithors ?}f ceil Thg’
constants. The paper is organized as follows. A brief descripSUPScripts before the comma correspond to the MFP depen-

tion of the statistica—mechanical treatment and the numerid€nCce on the coordinates of particles; the subscripts after the

cal solution of the resulting nonlinear integral equations jscomma correspond to the average states. In the following we
given in Sec. II. The formulas for the static and relaxation'@k€ into account only pair correlations between cells. It
dielectric permittivities are given in Sec. Il and Sec. 1V, should be ponjted out that the last thrge.fact.ors in @9

respectively. The statistical-mechanical approach and nJe€flect correlations between cells, that distinguish the present

merical calculations for the Frank elastic constants are giveﬁpproa?h from mgan—ﬁeld approximations. .Th‘? singlet _fl_mc-
in Sec. V. Conclusions are made in Sec. VI. tion F;(i) automatically satisfies the normalization condition

J;d(i)F;(i)=1. Using the relation between singlet and bi-
nary functions[5,30] F;(i)=/;d(j)F;;(ij), that follows
Il. STATISTICAL-MECHANICAL TREATMENT from their definitions, one obtains a closed system of nonlin-
ear integral equation§Es) involving MFPs[5,6,30

(ij)
kgT |’

We consider here a classical one-component fluid, con
sisting of cylindrically symmetric particles; lef; denote
their center-of-mass coordinates, amddenote unit vectors Wi (i) = f_d(j)V(ij )z//j"il(j)Fj(j). (©)]
defining their orientations; in the following the collective ]
symboli=(q;,g) will be used. Particles can be identified, to
a certain approximation, as prolate ellipsoids of revolution
each with major semiaxis; and minor semiaxis-, , respec-
tively [1]. One consider® such particles occupying a vol-
umeV at the temperaturd, and can ideally subdivide the o
total volume intoN cells, each with volume =V/N, in a P, =(P, (cos B))= fd(i)Fi(i)Pz,_(cos,B), 4
simple-cubic lattice. The treatment used here further assumes i
that each cell is occupied by one and only one patrticle; this
seems reasonable for a condensed system. Particles are as- A\ ; N ITET
sumed to interact via a pairwise additive potendi(ij), so (6-e) fid(l)fjd(J)F”(” &8, ©
that the total interaction energy for the particles isU
=2i-;®(ij). The quantity expfU/kgT) is the canonical — 27z ) . 27z
probability density. Upon integrating the coordinates of re- K= Pz(COSB)COST = f_d(')Fi(')Pz(Cosﬁ)CosT’
maining particles, one can define single-particle probability ' 6)
densitiesF;(i), two-particle probability densities;(ij),
and so 0r15,6,19,30. The infinite hierarchy is truncated here as well as the Helmholtz free energy
at the two-particle level. By partitioning the space mentioned
above,F;(i) is the probability density for a single particle F .
confined inside a cell of volume, and F;;(ij) is a joint f:N:_kBTI”ﬁ‘ﬂi(')d(')' ™
probability density for two particles confined in two different
cells. The above-mentioned functions can also be written ir|1_|
terms of mean-force potentialdMFP9 following the ap-
proach outlined irf5,6,19,30. In terms of the MFPg; ;(i),
these functions can be written as

After solving Eq.(3), one can compute a number of correla-
tors of a liquid crystalline system, expressed in terms of one-
and two-particle functions

ereP,, is the even order parametef®; denote the Leg-
endre polynomialsg is the polar angle, i.e., the angle be-
tween the long axis of the molecule and the director, the
latter taken to coincide with the cellaxis, andd is the layer
spacing of the Smectic-A&SmA) phase. The coupling order

- & (1) ~ Parameterx is a measure of the amplitude of the density
Jid() ¢;()) wave describing the layered structure in the Snphase.

The nematic phase is characterized by 0 and P, #0
Fi(i)=Fi(O)F(OVj) g (D) " ey () 2 [10].

Fi())
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Except for linear problems, solving a five-dimensional The kernel ofV(i,j) integral equations in Eq.3) is de-
problem, Eq.(3), is very complicated, and there is no good termined by the pair interaction potential; this was chosen to
general method for systems of more than one nonlinear equée the sum of a Gay-Berne and dipole-dipole interactions
tion. The solutiony; (i) is invariably obtained by a numeri-
cal iterative procedure, using the formula D(ij)=Dgp(ij) + Dyglij).

m[k+ 1 _ 1, m[K iy mik 1/2
MR = {ymH(PLYMI(P) ®) The GB term ®gg(ij)=4€0e(R ?—R %), where R
or =(qj—o+o,)lo,, q;=|q—q, is defined by a Lennard-
Jones (12-6) potentidll], with ranges and strengthe that
wm[k-%—l](Pi):{wm[k](Pi)_’_me[k](Pi)}/Z, (9) depend on the relative orientation of the partic¢esnde ,
the orientations of the particles with respect to the intermo-
for m=1,2,...]. HereL, |||‘_||$1 is the five-dimensional lecular vector between thei_r center-of-mass positi@js
nonlinear integral operator defined by Eg) in the spacev, i /laij|, the molecular anisotropy parameter=o /o,
andP, is a five-dimensional vector in the same spads, the that controls the length-to-breadth ratio of the repulsive core,
iteration number, and is the number of neighbors. The al- &nd another set of parameters, which can be used to adjust
gorithms, Eqs(8) and(9), were implemented as follows: the the ratio between end-to-end and side-by-side well depths,
initial approximation was to sepim[o] as constant; the inte- der_10ted b_yee/ €s» qnd thVe exponﬂent parametersapd M
grals in the right-hand side of Eq®) or (9) were calculated Which aré included ie=e;(6,6) €5 (& .6 ,). The dipolar

by the Sobol's method31], using the Haar functions for t€rm is defined by yq(ij)=(A /qﬁ){q’ej_?"?j'qaj'ej}'
calculating multidimensional integrals whereA is the magnitude of the molecular dipole moment.

In the case of polar LCs, such as 5CB, the dipole moment
1 1 M (A~5D [33,34) is directed from the polar head to the hy-
f dxl...f dx,f(X1,Xz, ... ,xn)%(llM)z f(P,). drophobic tail of the molecule. Simulation studies have
0 0 a=l shown that the dipolar GB pair potential provides a useful
(10 model for the interactions between real mesogenic mol-
ecules. However, the variety of parameterizations that have
been used if1-5] yields very different potential forms.

quence 31], and were obtained by means of aR.. genera- Whereas a value far /o, of 3 is reasonable for 5CB mol-

tor [32]; M is the number of points, and the precision of the €cUles ¢~1.8 nm,o, ~0.59 nm), it is not known to what
calculation is R~O(M~1In"M) versus ~O(1/\/M) for extent the values used for the qther parameters are appropri-
Monte Carlo integration. Calculations were carried out usin te. In an attempt to answer this question, we have adopted

M =10% corresponding to FOpoints for a Monte Carlo in- hE; pﬂtgnz“j‘S' f?r ?}CBIdW'tlh pgramt_atenfz, '”“h: 0];98,hand
tegration of comparable accuracy. This has been achievet’ s~ - f.tht s_tou i also be zomtethoutlt a'gthort e con-
becausé_ P, sequences possess a more uniformly distribute €79€Nce of the iterative procedure, the algorithm HE5.

set of M points in the five-dimensional unit hypercube than an/d ©) '3 veryhfsehnsmveﬂ:o th? Chof'(t:ﬁ of bﬁ’? pfrl]rameters
independent random sequences. The iterative procedure wis' €s and w, which vary the value of the well depth.
Our calculations have employed the units of distance

ted f i ighb f then cell; i der t
repeatsg for various Neighibors o ce’ I order 10 =0.59 nm and energy,=2.07< 10 21 J. Thus, the reduced

keep the treatment numerically tractable, we took the trun-— " R
cating of the interaction potential at second-nearest neigh?Nits for number densitp=No7/V~0.512, temperaturé
3)12~25, and an-

bors. The convergence criterion 5=|ylk*1(P;) ~ =KgT/€o, dipole momentu®=A/(€oo7) *~2.5,
— M) |1|yM(P;)| for the iterative procedures, Ec) isotropy parametefy=3 were used. The orientational order
and (9), was chosen equal to 16, Two points should be of LCs is traditionally quantified in terms of order param-
noted. First, in the present calculation we considered only &ters. Comparing for 5CB at temperatire 300 K the P,

simple-cubic structure, with six-nearest neighbors and 12ndP, values obtained from the integral equations approach

next-nearest neighbors; this implies that we deal with a SYSi), P, and P, obtained from the molecular dynami¢iD)

tem of 18 nonlinear equations in a flve—dlmensmnal SPaceg;ulation of 5CB[29] (ii), which were carried out using the
We are aware of the fact that the correlations are stron

. A Yonventional potential energy function composed of intra-
beyond the next-nearest neighbors in view of the long-rangg, i jntermolecular contributiorid7,18,29, and experimen-
hature of dipolar term in the dipolar GB fluid; the. computa- o1 gata derived from polarized laser Raman scatte(imny
tions become, however, very heavy and suffer, in addition —

from numerical instabilities. The second point concerns thd321 Shows the following resultsti) P,=0.789; P,=0.38,
convergence of the iterative procedure; the algorithm Eqs(ii) P2=0.504;P,=0.188,(iii) P,=0.61; P,=0.15, respec-
(8) and (9) exhibit a poor convergence in the V|C|n|ty of tlvely Both the IEs method and MD simulation use the same
N-Sm—A phase transition point, because the funcﬁl@m(i) value of A. It should be pOinted out that the values of the
is not a Smooth|y Varying one. Tak|ng these points into aC_Order parameters calculated in the framework of MD simu-
count, we restrict the present paper to investigations of théation using various degrees of approximation in the interac-
nematic phase with interactions from only first- and secondtion models[17,18,29 and different definitions of molecular
nearest neighbors. coordinate systems lead to widely differdt andP, values

Here the pointd, are uniformly distributedmod 1) in the
n-dimensional unit cube. These points belong th R, se-
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(P,€[0.505,0.72;P,[0.18,0.3] [17]). Interpretation of S
experimental results is also dependent on the selection of I

molecular framg35]. Based on these facts, such deviations A A4 a4  a .
among the three cases are not surprising. For all tempera- 251 1

tures, values of the coupling order parame?were found to

be k=9.5x10 2, confirming the nematic character of the
phase. Because we found a small change in the values of the 20F
Helmholtz free energy from-15.55(nearest neighboyso

—15.67 (nearest and next-nearest neighbotise restriction
in taking only first and second neighbors into account ap- 15 §

o
o o
AA AA MDA AL A A

g(0)

pears quite reasonable. In the previous paper, a comparison ot s
of the theory, that takes into account only nearest and next-
nearest neighbors, with the Monte Carlo simulations for the 10 F 4
same pair potential shows a quantitative agreenpghtlt v v v v v v
should be pointed out that in the Monte Carlo simulations [ o9 vv vov wvov VYV °
[36] of the dipolar GB system the cut-off radins=1.40, 5L . .
was comparable with the one used in our calculations 300 302 304 306
=20, . Nevertheless, the problem of accounting the long- T (K)
range nature of dipolar interactions may require further at-
tention[37,38. FIG. 1. The temperature dependence of the static dielectric con-
stantse;(0) (] =||,L) for 5CB. Solid symbols represent points cal-
IIl. THE STATIC DIELECTRIC PROPERTIES culated using Eq(14); ¢ (up triangle$, €, (down triangle} e
OF THE NEMATIC LIQUID CRYSTAL (diamondg. Open triangles and squareg) and down triangles

with circles (e, ) are experimental data Ref®] and[33], respec-
The static dielectric constant is orientation independent irively.
isotropic liquids, and is thus characterized by a single value
€ . Dued.tfcf) the gnisr?tropic ngturﬁ of LCsh this constant be'vvherej =(|l,L), m#i, and{---) is defined as in Eq(5).
comes different in the nematic phase with two components; ; ; _ ,
parallel (¢)) and perpendiculare( ) to the directom can be “The final expressions fok; andy, now take the form
distinguished. In the case of nonpolar LCs the valuegof

and e, are similar to the isotropic liquide; [10], while for barpu*?
polar LCs such as 5CBj and €, differ substantially. The J:th,
average dielectric permittivity is defined as
— EH-FZEL (11)
3 _$ 1 12
y—ﬁ( 1—9—1/2 arctan() ) ,

For 5CB, at the nematic-isotropic transition the change of the
average permittivitybey, = e— €; is negative and@ decreases
slowly in the nematic phase with decreasing temperature 1

[10]. According to the molecular theor20], the compo- Y.=3q —1+i1/2 arctarﬂ”z).
nents of the dielectric permittivity in an infinite geometry are Q
given by
6]_2_ Bje;—D;=0, (12 Here(=§—1 and{=¢|/€e, . The set of roots that leads

to reasonable values of the¢ ande, can be evaluated itera-

where Bj:(Aj+1—yj)/_(l_+yj), Djzyj/(1+yj)_, and j tively using the formula
=(||,L). Unknown coefficienty; andA; are functions of;
and short-range correlations exist between dipole moments
inside a sphere centered on parti¢jeof radius R, large B (ely [ B2(€H) 12

. A . . [k+1] _ 1N + 1 ) +D; [K] (14)
compared with the molecular sizes and embedded in a di- €j 2 4 i)
electric continuum of infinite extent having the same dielec-
tric constant as the medium inside the sphere. The short-

range'correlations_ can be calculated. in the framework of th§,arek is the iteration number. Figure 1 shows the tempera-
statistical mechanical scheme described above as ture dependence of calculated and experimental data for
static dielectric permittivity of 5CB. Reasonable agreement
t= < el. X eim>, (13)  is observed between the calculated values and experimental
meRy results reported in Ref$8,9] and[33].
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IV. DIELECTRIC RELAXATION IN THE NEMATIC

1
PHASE AND ORIENTATIONAL CORRELATION TIMES _L:CLmnDLJFnZ(DH_DL): (22)

Tmn

The complex dielectric permittivity tensore(w)
=Ree€j(w)—i Im €, (w) for 5CB has been measured in the
a wide frequency range and shown Debye-type relaxation
frequencieg1 kHz < w/(27)<13 MH2) [39]. For uniaxial
nematic liquid crystal(NLC), in the laboratory coordinate
systemXY Z where theZ axis coincides with the directar,

where the coefficients®, , that depend o, and P,, are
Fbulated in Refs[42,43. We note that thers, and 71, are
solely determined by the tumbling motion of the molecule,

-1

there are only two independent components of the tensor 730: DLZ__ZEZ , (23
e(w); one perpendiculare, ()= exx(w)=eyy(w), and 1+2P,
the other parallek|(w) = €z,(w) to the directom. One can
write the components of the normalized complex permittivity 2+Ez -1
tensor in the fornf40] m=|D, —— (24)
1-P,
ej(a)) -1 ) * . . . . .
o7 1o . Ci(t)exp —iwt)dt, (15  Recently, the time correlation function§, (i=0,1) for 5CB
j

at one temperatur800 K) have been calculatdd4]. It was
done using dynamical parameters obtained from the MD
simulation, based on realistic atom-atom interaction poten-
tial. Here we extend, in the framework of the NMR relax-
CH(t)=(ez(0)ez(t)):d>(1)0(t), (16) ation theory, our s_tudy of 5CB over a vv_lder temperature
range. The details in the data analysis using the decoupling
C, (1) =(ey(0)ey(t))=(ey(0)ey(t)) =dL(t), (1 model for the corrglated |.nter.nal motions can bg found in
() =(ex(0ex(t)=(ev(0)ey(D)=Py(t), (17 Ref. [14]. The rotational diffusion moddl21,45,46 is em-
WhereCIDilo(t) (i=0,1) are first-rank time correlation func- ployed .to describg small step rotational'diffusions pf mol-
tions, e, are the projections of the unit vecteralong the ecul_es in a potential of mean torque. Using the_a_ddltlve po-
dipole moment onto the laboratory axis(a=X,Y,Z). tential method 14|, the observed quadrupolar splittings were

Using Eqs.(16) and (17) with functions[41] modeled to give the potential of mean torque experienced by
' each molecule. Because of correlated internal bond rotations

where C(t) are the components of the tensor dipole auto
correlation function, and may be represented by

5 in the flexible pentyl chain, a decoupled modl&#,22 was
t 14 2P t in the flexibl tyl chai d led {ie4,22
@éo(t)=<béo(0)exp< -—= 2 exp( __1) , used to give the spectral densities of methylene deuterons on
o0 3 o0 C, in 5CB:
(18
_ 377_2 _ 81 81 _
and imer= "7 oS S 3, (3, oty
2 noo k=1 =1 ’
B (0= 01(0) t) 1-P, t
= exg ——| = exg ——|, i
10 10 % 3 % xex —inyiy o IxMx{ )
(19
81
we may derive the expressions for the components of the x| > dﬁf,o( al(\;l),lQ)qu_in":Dg\;l),lQ]Xf'l)Xft()
permittivity tensore;, (w) as 1=
2 2
EH(w)—l_l ®L(0) i“”'éo (20) ('ann’)J[(amnn’)j+|)‘k|] (25
g—1 00 1+iw7'00’ i m2W2+[(a§1nn't)j+|)\k|]2
and whereq{,,= 165 kHz is the quadrupolar coupling constant,
o 6o and wﬁ}',)"Q are the polar angles for tt@-D bond of the
€ (w)—1 B N lwTig conformerl in the frame fixed on the molecular copg, and
Te o1 1-P340) 1T ol (2D x® are the eigenvalues and eigenvectors from diagonalizing

the transition rate matrix, andwénn,)j /D, , the decay con-

Different spectroscopic methods provide time correlationstants, and/Bfnnn,) j » the relative weights of the exponentials
functions (TCF9 @, (t) with different rank values oL. in the time correlation functions, are the eigenvalues and
First-rank (L=1) TCFs are relevant for infrared and dielec- eigenvectors from diagonalizing the matrix of the rotational
tric spectroscopies, while TCFs with=2 appear in the ex- diffusion operatof46]. In the above equation, the number 81
pressions for nuclear spin relaxation rates and Raman barigl the number of distinct conformers available to the pentyl
shapes. Based on the short time expansion of the TCFs, aain of 5CB. The transition rate matrix contains three phe-
expression for the correlation times was proposed nomenological jump constants;, k,, and ks for the so-

031701-5



A. V. ZAKHAROV AND RONALD Y. DONG PHYSICAL REVIEW E 64 031701

TABLE I. The rotational diffusion coefficient®; (j=||,L) and the orientational time correlations,

(i=0,1) calculated using Eq$23) and(24) with 32=O.51 for 5CB molecules in the nematic phase at 300
K. The last two columns are obtained from the MD simulatidd].

Dy (X1078) (9 D, (x1078) (s 750 (N9 10 (N9 750 (N9 10 (N9

12.4 5.32 38.6 3.66 28.9 2.83

called one-bond, two-bond, and three-bond motions, respec- ) ) )
tively. The rotation diffusion tensor is characterized by two  fr=5[K1(Vn)"+Ky(nVXn)7+Ka(nX VXn)7],

principal valued, andDj in the molecular frame, and these (27)
appear in Eq(25) through the decay constantsi(nn,)j . By
modeling the observed spectral densities for carbons 1-4 ahd f13=kisk-n(V-n), fo4=— (Kot kog)k-[NV-n

two different Larmor frequencies and several temperaturesy nx (V xn)], andf, is the anchoring energy at the inter-
both the rotational diffusion constanB; (j=||,L) can be face. Herek,5 andk,, are surfacelike bulk elastic terms and
expressed in an Arrhenius form a3;=Dexp—E;/RT,  k;5 can vanish on symmetry grounfi7], andk is a unit
where D|‘|)=3.25>< 10 s71, E|=4.26X 10* J/mol, D° vector normal to the surfacg confining the NLC. The first
=1.63x10" s71, E, =3.725< 10" J/mol, andR is the gas term in Eq.(26) describes the energy associated with the
constant. For completeness we reprodiigeandD, , and  three basic types of deformation with the bulk Frank ECs
tabulate the calculatedf, and 77, values at temperature 300 Kj, K;, K3, for splay, twist, and ben{i26,27 distortions,

K (P,=0.51 from NMR) in Table |. Note that the last two respectively. Over the years, quite a few microscopic theories
columns are values that have been obtained from the mriPr the bulk ECsK; (i=1,2,3) have been develop¢d3—

simulation, With32=0.504 andD, =1.4x10° s ! [44]. 28]. Recently, calculations of the ratiléi/K both for the
Having obtained time correlation functiom-%o (i=0,1), it usual GB fluid and for the dipolar GB fluid, have been car-

is possible to calculate the complex dielectric permittivity ried out on a ds:jmplej—.cubic system, dgnd forha range Qf tehm—
coefficientse;(w) (j=,L) using Egs.(20) and (21). The peratures and densities corresponding to the nematic phase

results of the calculations of the longitudinal and transvers@l]l' Orr: thebOtTer hanld, I |sfd|t:f|cult to r;;_egsure Experlmen_—
dielectric permittivities Rej(w) and absorption Ine;(w) tally the absolute values of these coefficients. However, it

for 5CB molecules af=300 K, both for time correlation has been showiil1,12 that the experimental results for

functions obtained in the framework NMR relaxation theory
and by MD simulatiorf44] are shown in Fig. 2. It should be
pointed out that our values of the static permittivity coeffi- 251
cients were calculated using the statistical-mechanical theory
that takes into account translational and orientational corre-
lations between dipoles as well as their coupling, whereas in
the case of MD simulation the same coefficients have been
calculated in the framework of the mean-field theory. This
leads to different values for Rg(w), whereas their dielec-
tric loss values for the nematic phase of 5CB correspond to a
maximum at the frequency of= w/(27)~6 MHz, which is
very close to the experimental data measured at the atmo-
spheric pressurg39.

30 T T T T T T T
I (@ ]

N
o
T

Re al(co)

6.0 65 7.0 75 80 85 9.0
(b)

-
O N A O 00 OO0 1 O O
—

Im e (o)

V. FORMULAS FOR THE FRANK ELASTIC CONSTANTS

In an ideal NLC, the molecules are oriented on the aver- T e B
age along the director [10]. However, the presence of ther- 60 65 7.0 75 80 85 9.0
mal fluctuations or confining surfaces impairs this ideal con- log,, ®
figuration. Distortion of the orientational order occurs and
varies from point to point. The distortion of the director field  FIG. 2. The real and imaginary parts of the longitudinal and
n(q) can be determined by minimizing the functional of the transverse dielectric permittivity;(w) = Reej(w) =i Im €j(w) (]
free energy that takes the form =|,L) calculated using Eqg20) and (21) at T=300 K, where
wl27 is in Hz; solid and dotted lines ifa) are longitudinal and
transverse components of R¢w), obtained for thE'TilO (i=0,1)
F= f dVf:+ f dS(fiz+ foutfo), (26) determined in the framework NMR relaxation theory, respectively,
whereas dashed and dash-dotted lines obtained forre(i
=0,1) determined due to MD simulati¢A4]. The same lines ifb)
where are for Ime;(w).
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splay and twist Frank elastic constants have a weak tempera- T T

ture dependence, whereas the bend elastic constant rapidly 70 * . T
increases with temperature. In this paper we present an in- - * o

vestigation of elasticity phenomena in a nematic LC formed 60 |- * °
by 5CB molecules, using a combination of existing statistical i

mechanical approaches proposed in Rg#s25,29. In the 50 | 4

framework of these approaches the bulk elastic constants are

connecting with structural quantities such as the orientational Z 40l i
distribution and direct correlation functions as 5;
K, 301 -
—==1+\(5—-92), (29
K 20 .
[ ]
K o n L n
—2=1-\(1+32), (29) 108 4 & 4 ]
K a
0 1 n 1 L 1 n 1 L 1 n 1
Ks 300 301 302 303 304 305
?21—4)\(1—32), (30 T (K)

where z= (cog' B—co$ B)/(cos B—cos B), and A= 5/[2(3
—1n)] is a geometric factor of the molecule with= (2
- 1)/(72i 1). In the density-functional approag®5,2§ the

quantityK is given as
10P,— 24P, +143— 5

105 67 '
(31

K== (K;+K,+Kg)=BP26

FIG. 3. The temperature dependence of the Frank elastic coef-
ficientsK; (i=1,2,3) for 5CB. Solid symbols represent points cal-
culated using Eq928), (29), and(30); circles K3), squaresK;),
and trianglesK), respectively. Open circle(3), square K;), and
triangle (K,) are experimental dat@ef.[11]), respectively.

=1,2,3) andC(ij) are known. While the order parameters
for various LCs are usually found easily, an accurate deter-
mination of the DCF for a nematic state is still a formidable
task.

whereB is a factor that has the dimension of force and may  ysing classical Percus-Yevick closure approximation and

be written ag5,25,29

€0

g

1+ﬁ772

B=3mp27°M,b? (32

1— 72
Here b=4mp7?M,[1+(3/14)%?]/[3(1— %?)] is a dimen-

sionless factor andl1,, (L=1,2) can be expressed in terms

of the DCFC(ij) as

M2L=—f JC(qi,a,q;,q)lqi—qledqidadq;de,-
(33

Here q; denote the coordinate of thieh molecule in the
volumewv. The averaged functions cb8 are

2P,+1
cog B= g ,
20P,+8P,+7
cos B= %,
110P,+72P,+ 16P4+ 33
cod B= 73l

Thus, according to Eqg28)—(30) we can calculate the
absolute values oK; (i=1,2,3) provided thatP, (L

the binary correlation functioR;;(ij) obtained in the frame-

work of the statistical mechanical scheme described in Sec.

II, we may determine the DCF in the forf48]
C(ij)=F;(i)H[1-V~Xij)], (34)

whereV(ij) has been defined above by the pair intermolecu-
lar potential. Having obtained the DGEij) and the set of

P, (L=1,2,3) it is possible to calculate E®S. Figure 3
shows the temperature dependence ofKheising this ap-
proach. Three different approximations have been combined
for the calculation of the EC4i) the nonlinear IEs theory
that requires access to the set of order parameters and the
binary correlation function(ii) the classical Percus-Yevick
approximation for the DCF, an(ii) Nemtsov and Zakharov
density-functional approach that implies that higher order pa-

rametergi.e., Pg) and higher moments.e.,M,) of the DCF

are used. Taking into account these approximations as well
as the fact that the Percus-Yevick closure works well mostly
for short-range intermolecular potentials and the difficulty
with measuring the absolute values of these coefficients, the
qualitative agreement between our calculations and the ex-
perimental valuegFig. 3) obtained using the Fredericksz
transition method11,12 is heartening. It should be noted
that the direct measure of the absolute values of the ECs is a
difficult task and in practice the ratids; /K, andK, /K, can

be directly measured with greatest accuracy by means of, for
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TABLE 1. Ratio of the Frank elastic coefficient&;/K, their ratiosK3 /K, andK,/K; in the nematic phase of 5CB.
K2/Ky for 5CB at 300 K calculated using the nonlinear IEs method Statistical-mechanical approach used for calculations of the
and using experimental dat&XP) [11]. elastic coefficients rest on the model in which tKe (i
=1,2,3) depend on the direct correlation function and set of

IE (n*=0) IE (u*~2.5) EXP order parameters. The method also takes into account both
Ka/K, 4.258 4.264 1.31 the intermole_cular attraction and ster_ic_ _repulsion, but is un-
K, /K, 0.694 0.695 0.505 able to describe the effect due to flexibility of the molecules.

Since the structure of the mesogenic cyanobiphenyl mol-
ecules is characterized by a rigid central core to which is

example, the light scattering.0]. Calculated and measured attached onéor more flexible hydrocarbon chain, the ability

ratios at 300 K are tabulated in Table II. to account for the chain flexibility in the final expressions for
the elastic coefficients is an important step towards their
VI. CONCLUSION most general expressions. Of course, the present GB model

of the intermolecular interactions is unable to account for the

In this paper, we present an investigation of the structureflexibility in real mesogenic compounds. On the other hand,
dielectric, and elastic phenomena as well as dynamics ahis limitation is counterbalanced by the simplicity of the
nematic liquid crystals, formed by dpentyl- present approach, which can be used to calculate many
4-n'-cyanobiphenyl, using a combination of existing statis-physical parameters of nematic liquid crystals. It is noted
tical mechanical theory based upon the method of condithat the long-range nature of the dipolar GB potential re-
tional distribution function and NMR relaxation theory. In quires further investigations, including perhaps better nu-
order to elucidate the role of the intermolecular dipole-dipolemerical approaches. Thus, the combination of the NMR re-
correlations in calculating the structural, static and elastidaxation techniques and statistical mechanics theories
coefficients we used the method of nonlinear integral equaprovides a powerful tool for investigating both the dielectric
tions, in which translational, orientational, and mixed corre-and elastic properties of real nematics. We believe that this
lations were taken into account. Using the dipolar GB potenpaper not only shows some useful routes for estimating the
tial and molecular model that allowed us to express the statielasticity, but also for analyzing the dielectric properties in
dielectric permittivity constants in terms of dipolar correla- nematic liquid crystals. Furthermore, the rotational diffusion
tors [20], the dielectric constants were calculated and come€onstant for molecular tumblings in the decoupled model for
pared with results obtained experimentdl8;9,33; a good the chain dynamics seems to produce reasonable values of
agreement between theory and experiment was found. Catlielectric loss in the nematic phase of 5CB, lending support
culations of the dielectric relaxation coefficients and orientato the NMR relaxation model.
tional correlation times at temperatures and density corre-
sponding to the nematic phase of 5CB also show good
agreement with the MD simulatiop44] and experimental
data[39]. We have also determined the absolute values of We acknowledge the financial support of the Natural Sci-
splay (K,), twist (K,), and bend K3) elastic constants, and ences and Engineering Council of Canada.
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